Présentation

Vous voulez apprendre l’algèbre linéaire, un outil complémentaire à vos connaissances acquises durant vos études en économie, ingénierie, physique, ou statistique? Ou simplement pour la beauté de la matière? Alors ce cours est fait pour vous! Comment remplir le rôle de l’outil dans la résolution de problèmes concrets, l’algèbre linéaire, qui capture l’essence des mathématiques – à savoir, l’algèbre et la géométrie – vous introduira au monde plus abstrait des mathématiques.

Proposé comme complément de cours aux ingénieurs de première année à l’École Polytechnique Fédérale de Lausanne, ce MOOC (composé de trois parties) n’en est pas moins un cours à part entière et peut être considéré comme une base solide d’algèbre linéaire pour tout étudiant pris par l’apprentissage de cette matière.

Bien que les vidéos constituant le cœur du cours, les exercices de type QCM (Questions to Choice Multiple). Plus précisément, les séries d’exercices sont accompagnées d’un corrigé au format PDF et de certains problèmes faisant l’objet d’une correction en version vidéo, dans laquelle les enseignants présentent la solution, étape par étape. Enfin, chaque vidéo de cours sera suivie d’un quiz, dont le but est de tester le degré d’assimilation des connaissances acquises.

Cette troisième (et dernière) partie du cours sera dévouée à l’étude des chapitres 9 et 10 cités plus haut. Une bonne connaissance de la matière enseignée dans les MOOCs Algèbre Linéaire (Partie 1) et Algébre Linéaire (Partie 2) est requise. Aussi, il est conseillé de travailler régulièrement et de manière assidue, de façon à ne pas prendre de retard lors de l’apprentissage de la matière.

Déroulement

A la fin du cours, l’étudiant sera capable

  • de définir les concepts théoriques introduits en cours et d’en donner des exemples illustratifs ;
  • de reconnaître un produit scalaire et maîtriser les propriétés associées à un tel objet (e.g. Inégalité de Cauchy-Schwarz, inégalité du triangle) ;
  • de et maîtriser les notions de bases liées à l’orthogonalité (e.g. familles/bases orthogonales, familles/bases orthonormales, orthogonal d’un sous-espace, Théorème de Pythagore) ;
  • de construire une base orthonormée d’un sous-espace vectoriel d’un espace euclidien à l’aide du procédé de Gram-Schmidt ;
  • de calculer la meilleure approximation quadratique d’un vecteur ;
  • de calculer la solution au sens des moindres carrés d’un système linéaire ;
  • de calculer la factorisation QR d’une matrice donnée, lorsque cela est possible ;
  • de diagonaliser orthogonalement une matrice symétrique donnée ;
  • de déterminer les axes principaux d’une forme quadratique donnée ;
  • de calculer la décomposition en valeurs singulières d’une matrice donnée.

Intervenants

Donna Testerman

Donna Testerman a obtenu son doctorat à l’Université d’Oregon (USA). Elle a d’abord enseigné et mené ses recherches aux Etats-Unis ainsi qu’en Angleterre, avant de s’établir en Suisse où elle travaille comme professeur à l’Ecole Polytechnique Fédérale de Lausanne. Son domaine de recherche est celui de la théorie des groupes. Plus précisément, elle s’intéresse particulièrement aux groupes algébriques, aux groupes finis de type de Lie et à la théorie des représentations.

Claude Marion

Claude Marion est collaborateur scientifique à l’EPFL. Il a obtenu son Ph.D en mathématiques à Imperial College Londres en 2009 et a travaillé en Angleterre, en Israël et en Suisse. Etant français, portugais et brésilien, il parle le français, l’anglais et le portugais. Egalement avide de sport, durant son temps libre, il nage ou court dans toutes les eaux ou sur tous les terrains à travers le monde.

Mikaël Cavallin

Diplômé de l’Ecole Polytechnique Fédérale de Lausanne et de l’université de York (UK), Mikaël Cavallin a obtenu son doctorat de l’EPFL en mathématiques à l’EPFL en avril 2015. Il occupe actuellement le poste de collaborateur scientifique au sein de cette dernière